Answer Extraction as Sequence Tagging with Tree Edit Distance

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch and Peter Clark

Our goal is to extract answers from pre-retrieved sentences for Question Answering (QA). We construct a linear-chain Conditional Random Field based on pairs of questions and their possible answer sentences, learning the association between questions and answer types. This casts answer extraction as an answer sequence tagging problem for the first time, where knowledge of shared structure between question and source sentence is incorporated through features based on Tree Edit Distance (TED). Our model is free of manually created question and answer templates, fast to run (processing 200 QA pairs per second excluding parsing time), and yields an F1 of 63.3\% on a new public dataset based on prior TREC QA evaluations. The developed system is open-source, and includes an implementation of the TED model that is state of the art in the task of ranking QA pairs.

Back to Papers Accepted