Text Alignment for Real-Time Crowd Captioning

Iftekhar Naim, Daniel Gildea, Walter Lasecki and Jeffrey Bigham

The primary way of providing real-time captioning for deaf and hard of hearing people is to employ expensive professional stenographers who can type as fast as natural speaking rates. Recent work has shown that a feasible alternative is to combine the partial captions of ordinary typists, each of whom types part of what they hear. In this paper, we describe an improved method for combining partial captions into a final output based on weighted A^* search and multiple sequence alignment (MSA). In contrast to prior work, our method allows the tradeoff between accuracy and speed to be tuned, and provides formal error bounds. Our method outperforms the current state-of-the-art on Word Error Rate (WER) (29.6%), BLEU Score (41.4%), and F-measure (36.9%). The end goal is for these captions to be used by people, and so we also compare how these metrics correlate with the judgments of 50 study participants, which may assist others looking to make further progress on this problem.

Back to Papers Accepted